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SUMMARY 

Ever since the time of Chorin’s classic 1968 paper on projection methods, there have been lingering and 
poorly understood issues related to the best-r even proper or appropriate-boundary conditions (BCs) 
that should be (or could be) applied to the ‘intermediate’ velocity when the viscous terms in the incom- 
pressible Navier-Stokes equations are treated with an implicit time integration method and a Poisson 
equation is solved as part of a ‘time step’. These issues also pervade all related methods that uncouple the 
equations by ‘splitting’ the pressure computation from that of the velocity-at least in the presence of solid 
boundaries and (again) when implicit treatment of the viscous terms is employed. This paper is intended to 
clarify these issues by showing which intermediate BCs are ‘best’ and why some that are not work well 
anyway. In particular we show that all intermediate BCs must cause problems related to the regularity of the 
solution near boundaries, but that a near-miraculous recovery occurs such that accurate results are 
nevertheless achieved beyond the spurious boundary layer introduced by such methods. The mechanism for 
this ‘miracle’ is related to the existence of a higher-order equation that is actually satisfied by the pressure. 
All that is required then for projection (splitting, fractional step, etc.) methods to work well is that the 
spurious boundary layer be thin-as has been largely observed in practice. 

KEY WORDS Incompressible flow Navier-Stokes equations Projection methods Splitting methods 
Fractional step methods 

1. INTRODUCTION 

In this first part of a two-part paper we present the theory behind projection methods-a theory 
that also applies to numerous aliases: splitting methods, fractional step methods, pressure 
correction methods, to name a few. After defining the goal of these approximations, they are 
carefully derived in a fully continuous setting, in which the so-called optimal boundary conditions 
(BCs) are also derived. Next, these optimal BCs are waived and a family of simpler but less 
defensible schemes is presented. After a discussion on wall vorticity production, the simple 
schemes are extended to the case wherein the flow leaves the computational domain. The simpler 
schemes are then justified a posteriori by inverting-in principle-the sequence of steps. After 
presenting the semi-discrete analogues of the simpler projection methods wherein time is 
discretized, the final explanation of the success of these methods is unveiled by revealing the 
biharmonic equation for the pressure and the concomitant biharmonic miracle. 
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2. THE CONTINUUM EQUATIONS 

2.1. The conventional Navier-Stokes equations (the goal) 

The equations of interest are the 2D (and 3D, but herein we focus on the former) time- 
dependent incompressible Navier-Stokes (NS) equations for the velocity (u = ( u  u ) ~ )  and 
kinematic pressure (P, pressure divided by density) in a bounded domain (R): 

a U  

at - + u * v u =  -VP+vVZu+f, (14 

v * u  = 0, (1b) 
where f is a given ‘body force’. These equations are to be solved subject to the typical boundary 
conditions (BCs) of specified velocity (Dirichlet) on rl , i.e. 

u = w  on rl, (W 
and natural ‘pseudo-traction’ conditions (Neumann) on Tz, i.e. 

where rl @ Tz = at2 (the boundary of R), n represents the outward normal direction (u, = U-n), 
z represents the corresponding tangential direction (u, = u - T )  and F, and F ,  are the normal and 
tangential components of the specified boundary ‘traction’ (F, = F, = 0 is commonly used when 
TZ represents an ‘outflow’ boundary); and initial condition 

u(x, 0) = uo(x), (W 
where it is required that 

and 
n-u, = n.w(x,O) on rl 

V.u ,=O in R 

in order that a solution exist. (The NS equations are ill-posed if either (If) or (lg) is violated; see 
Gresho and Sani,’ hereafter referred to as GS, for details.) Finally, if Tz = 0 (the null set) or, 
more generally, if u * n  is specified on all of 80, another solvability constraint (global mass 
conservation) enters: 

r 
n.w(x, t )  = 0. 

Jan 
Equation (1) implies the following pressure Poisson equation (PPE), 

with concomitant BCs 

) au 
an at 

= n.( v v z u + f - - - u - v u  on r, 

and 

dun P = v - - F ,  on Tz. 
an 
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If all of the above solvability conditions are respected-see GS for details-the system given by 
(1) delivers the same solution (u, P) as that given by (1) with (lb) omitted and replaced by (2). 

Remarks 

1. BC (2b), whose relevance was re-established in GS, plays a major role in the theory of 
projection methods, in which it is a sought-after-but-never-quite-attained goal. This BC in 
fact ‘causes’ the normal component of the momentum equations to satisfy the first-order 
compatibility condition 

and is a consequence of the requirement that V - u  = 0 on r-see Remark 2 In contrast, the 
tangential component(s) of the momentum equation usually do not satisfy the first-order 
compatibility condition(s) see also Remark 4. 

2. In the weak from of (1) and (2) that is associated with (leads to) the finite element method, 
BCs (Id) and (2c) are enforced weakly in such a way that the divergence-free constraint (lb) is 
enforced strongly; i.e. V - u = 0 in R and on an. In fact, we may (and do) strengthen (1 b) to 
read 

V . U = O  in a, (1b) 
where fi 3 R + dR (see GS), a result that will be used repeatedly in the sequel. 

3. Another consequence of mass conservation is that Jan n u = 0 is always satisfied-via the 
constraint on the data given by (lh) if Tz = 0, and as a property of the solution otherwise. 

4. For t > 0 the solution of (1) and (2) in fact satisfies the overdetermined Neumann problem for 
the pressure; i.e. the tangential component(s) of (la) are then also satisfied on rl even though 
the pressure Poisson equation is solved by applying only the normal component; via (2a) 
and (2b). 

2.2. The Navier-Stokes equations viewed as projections 

Because we will be using projection methods to approximate the solution of the NS equations, it 
may first be fruitful to re-interpret (or attempt to re-interpret) them as projections. To this end we 
first rewrite the NS equations as 

(3) 
au 
at 
- + V P  = S(u) in R, V . U = O  in a, 

where S( u) 3 vV2u + f - u Vu is generally neither divergence-free nor curl-free and, following 
Chorin,z- invoke the following equivalent interpretation: given u, the vector S( u) is ‘known’ and 
can be projected onto both the subspace of divergence-free vectors (dulat) and the subspace of 
curl-free vectors (VP), a process that can be stated mathematically (and formally) as 

au 
at 
- = pS(u) and VP = QS(u), 

where p and Q(-I-p) are projection operators: p2 = p, Q2 = Q and pQ = Qp = 0; p 
projects any vector onto the null space of div-V * p = &and Q projects any vector onto the 
null space of curl-V x Q = 0. Thus the acceleration is rendered divergence-free, as required by 
the time derivative of (3b). In fact, comparing (3) with (4) yields the explicit form of these 
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operators-at least (again) formally: 

g = Z-V(V2)- 'V.  = Z-grad(V2)-' div, Q = I- g = grad(V2)-' div. 

We note too that g and Q also contain all appropriate boundary conditions; i.e. they are 
operators with the BCs 'built-in'. A further discussion of these g s  and Qs is presented in the 
Appendix, the discrete portion of which will be defined in Part 2. 

Consider now the following approximate representation, in which the pressure (gradient) is 
'guessed at'-call it V k r a t h e r  than coming from (2) or (3) or (4): 

aii 
- = S( i )  - vp", 
at 

in which the new pseudo-velocity ii is generally not divergence-free because P" # P. Suppose too 
that ii starts from the same IC as u and is (continuously) projected onto the divergence-free 
subspace via g ,  and that we call the divergence-free result v; i.e. 

v = gii. (5b) 
(Note that there is no 'feedback': v from (5b) does not affect ii from (5a) during its evolution.) On 
the assumption that v = u, one could save time and money by solving (5) instead of (3). But since 
the assumption is generally not very good (except perhaps near t=O),  we (ultimately) follow 
Chorin2.3 and consider the discrete time approximate solutions of (4) and (5) in which, at the 
beginning of each (small) time step, we take ii = u. This controls/limits the amount of wandering 
from the divergence-free subspace that is permitted by ii; i.e. we recall that S is not a divergence- 
free vector in general, nor is VF, nor is S - VF, so that an extended time integration of (5a) would 
be 'dangerous' in that v from (5b) would generally (because F # P) diverge ever further from the 
time integral of (4a); i.e. 

v -uo  = 1: g{S[ii(x,r)]-VF}d.r # pS[u(x,.r)]dt = u-uo ,  1: 
For example, the implicit (backward) Euler method on (4) gives 

( u n + 1  -un)/At = P S ( U n + l ) ,  VPn+1 = QS(Un+l), 
and the same scheme on (5) gives 

followed by 
(in+1 -un)/At = S(Gn+l)-Vp"n+l* 

v n + 1  = Pfin+l. 
The 'realization' of the true backward Euler projection is, however, not simple; it involves the 
simultaneous solution for velocity and pressure (i.e. it can only be realized by applying the 
backward Euler method to the coupled system in (3)). On the other hand, the realization of ( 5 )  is 
simpler because it is sequential-given that we have solved for a,+ as above, the projection step 
is realized via the following decomposition: 

i n  + 1 = vn  + 1 + V q  v * v , + 1  = 0, 

where cp is a Lagrange multiplier associated with the projection of iin+ and vn+ is taken as an 
approximation to the solution of (3). The key word is sequential-u then P rather than u and P 
from (3) or (4)-and this is a primary reason for considering (implicit or semi-implicit) projection 
methods. It is also worth emphasizing that v,+ # u , + ~  and that u,+ will always be closer to 
U(C,,+~),  the true NS velocity; i.e. the backward Euler projection method is an approximation of 
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an approximation. But before getting further into the semi-discrete backward Euler projection 
method, we back up and consider a whole family of projection methods, first in the space-time 
continuum, then in the semi-discrete case of which the above is one member, and finally (in Part 2) 
in the fully discrete case via a new finite element method. 

The interim bottom line is this: while the acceleration and pressure can indeed be legitimately 
computed via the sequential steps associated with a projection, the oelocity and pressure cannot- 
they are intimately coupled in an incompressible flow. But the philosophy of projection methods, 
in the hope of finding a cost-effective approximation, is ‘try anyway’, and this we do in the 
remainder of this paper, in which-at the end-the illegitimacy of the uncoupled approach is 
finally rationalized and largely justified. 

3. THE PROJECTION METHOD APPROXIMATION 

The more one studies the literature on and deeply contemplates the theory behind ‘projection’ 
methods (or fractional step methods, or splitting methods, or pressure correction methods, or 
velocity correction methods, or . . .), whose goal is to reduce the cost of a simulation by 
uncoupling the velocity from the pressure, the more one is led to the following two questions: 
(1) How do they really come about? (2) Why and how do they work? That is, the velocity and 
pressure are not really meant to be uncoupled for viscous incompressible flow! (For example, in a 
recent paper which is complementary to our own, Orszag et al.4 state: ‘While these steps have 
been well known to practitioners of computational fluid dynamics, it is still mysterious how and 
why they work.’ For a recent expost of our own confusion on this subject, as well as a valid 
discussion of some of the issues, see the BC discussion in Gresho and Chan.5) Herein we attempt 
to answer these questions, initially in the context of a family of methods that are continuous in 
both space and time. These are followed by semi-discrete methods, and finally, in the second part 
of the paper, by fully discrete realizations in the form of algorithms for the computer-some of 
which we demonstrate. 

3.1. Derivation of (continuous) projection methods 

3.1.1. Optimal schemes. We begin by restating the concept of a projection method, first in 
words and then in mathematics, noting that in our definition projection methods must always be 
viewed as techniques for obtaining approximate solutions of the NS equations. First, it is clear 
that if the proper (correct) pressure gradient were known as a function of space and time, then the 
NS equations would ‘merely’ represent a coupled system of vector ‘heat equations’ with the 
continuity equation being completely superfluous. With this as a general goal, projection method 
approximations generally proceed as follows: 

(0) Given a divergence-free velocity field that satisfies the appropriate BCs, say at t = 0 for 
convenience, perform the following steps. 

(1) Guess-i.e. approximate in some way-the concomitant pressure gradient, both at t = 0 
and for t > 0. 

(2) Solve the momentum equations alone up to ‘projection time’, t = T, which time could either 
be set a priori (by clever or otherwise methods) or could be defined as that time at which an 
appropriate norm of the divergence of the resulting ‘intermediate velocity’ reaches some 
predetermined maximum allowable value. (Its selection is clearly an important part of the 
approximation.) 

(3) Perform the projection of the intermediate velocity onto the appropriate subspace of 
divergence-free vector fields. Call (perhaps brazenly) the result the desired (physical) 
velocity. This completes one projection cycle; reset time to t = 0 and go to Step (1). 
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Remark. ‘Resetting the clock’ ( t  = 0) is merely a convenience in the presentation. It of course 
does not imply resetting time-dependent body forces and/or BCs back to those at the beginning of 
the simulation. It merely means to go to the next projection cycle. In fact, all of the discussion to 
follow is actually directed toward the case t > 0, for which the NS solution satisfies the 
overdetermined Neumann problem-the vector momentum equation is satisfied in R and on r, a 
situation not shared by projection methods. 

The realization of the above steps involves a sequence of ‘details’, some of which are rather 
important and are related to BCs-both on the intermediate velocity and on the physical velocity. 
Another important detail is that of guessing the pressure field. Needless to say, the most 
‘successful’ projection methods (those whose projected velocity is close to the NS velocity for T 
‘large’) will incorporate a good guess for the pressure and will apply good BCs. 

We shall derive-and later analyse-one member of a family of projection methods, and at the 
end present two others in summary form. The method we shall derive in detail is the second in the 
family; we called it ‘Projection 2’ in our earlier publications on this subject5s6 and will continue to 
do so herein. (An explicit version of Projection 2-via lumped mass finite elements-was 
introduced much earlier’ but apparently not retained; i.e. in subsequent  publication^**^ these 
authors employed a technique closer to that of Chorin-xcept that they remained ‘explicit’ 
whereas Chorin and we use semi-implicit time integration-which we call Projection 1.) 

Its mathematical description is as follows, wherein it is important to state that, until further 
notice, we restrict our attention to the simpler, fully Dirichlet BC-i.e. Tz is 0. 

(a) Intermediate oelocity. Given the same uo as in (l), as well as the concomitant pressure field 
P o ( x )  and the rate of change of this pressure field on the boundary, P , ( x )  for X E  r, solve for the 
intermediate velocity G(x, t) from 

aii 
at 
-+vP, = vv2ii+T in R ,  

ii = w(t)+tV(B1P0+B2tPo)  on r, for O < t i T ,  (6b) 
with ii = uo at t = 0, where the dimensionless scalars B1 and b2 are to be determined during our 
search for ‘optimal’ BCs for i. (Note that if either or p2 is non-zero, the intermediate velocity 
will both penetrate r and slip along it.) Here1 = f(G) is a generic forcing term, which includes the 
advection term. (We suppress u - Vu because all of the ‘projection theory’ to follow is actually 
primarily applicable to the Stokes equations; i.e. all of the significant aspects/difficulties are 
caused by the viscous terms (Laplacian).) 

(b) Projection. With b(x, T )  available, perform the projection 

v(x, T ) = p G ( x ,  T )  

as follows: solve for v and cp from 

i i = v + V c p  and V . v = O  in fi, 
v * n = w ( T ) . n  on r, (7c) 

where we shall soon explain the selection of this boundary condition (Remark 2). This is 
equivalent to and is realized by the following two-step procedure. 

(i) Solve for cp from 
V 2 q = V * i i  in a, 
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(ii) Compute 

v = i - v t p  in a. (9) 

(c) Pressure update. Accepting (or defining) v as the ‘physical’ velocity at time t = T, determine 
P (  T) and P( T w e t a i l s  to follow later-and reset the clock: t = 0, v(  T)+uo in R, w( T)+uo on r, 
P (  T)+Po and P( T)+@,,. One cycle of the projection method is thus complete-in principle. 

Before completing the derivation, we make the following. 

Remarks 

1. The BCs chosen for ii are somewhat arbitrary because ii is not quite a physical entity. 
Optimal BCs do exist, however, in some sense, as we shall see. Also, it is probably not fruitful 
to consider any higher-order terms in the BC for ii, since the proper ones would be 
‘impossible’ to evaluate. 

2. Since (7a, b) is rendered well-posed by specifying either normal or tangential components of 
v on r (but not both-in general), it would seem to follow that the BC chosen for v, (7c), is 
not the only one that can be used; e.g. presumably one could replace (7c) by T v = 7 - w( T) 
on r. That this is presumption is false can be ascertained by examining its consequences in 
the light of the solvability requirement given by (If); i.e. the computed solution v(x, T) would 
not satisfy n v(x, T )  = n * w(x, T) on r at the end of the projection step-it would violate 
V - v  = 0 on r via v( T)+u, on r and thus be ill-posed, and the next projection cycle could 
not then be performed. (It is perhaps worth emphasizing that setting v = w on r in the 
projection step is an overspecified problem that generally has no solution; i.e. 4 will not 
generally satisfy the overdetermined Neumann problem. See also Orszag and Israeli” and 
GS.) The confusion related to this very issue has in fact been part of the mystique of 
projection methods. 

3. The BC for q, (8b), follows from (7a, b); i.e. V v = 0 on r implies that the normal component 
of (7a) applies on r. In fact, the first of (8b) will always hold on r, regardless of the choice of 
intermediate velocity BC and regardless of whether or not Tz=O; again this is a conse- 
quence of the fact that V - v = 0 on r as well as in R; see GS. 

4. The solvability condition implied by the Neumann problem (8), 
a -  

is automatically satisfied if (lh) is satisfied. 
5. Since V x Vq = 0, it seems clear at this point that the vorticity ‘contained by’ the inter- 

mediate velocity, V x ii, is unchanged by the projection (hopefully then, this vorticity is a 
good approximation to the true vorticity V x u); i.e. the projection is-for the most part at 
least, before the (necessary) introduction of vortex sheets-a potential flow adjustment. 

6. A seemingly deleterious but unavoidable by-product of projection methods is a spurious slip 
velocity. Whereas the true NS velocity will satisfy u = w on r (which also causes the pressure 
to satisfy the overdetermined Neumann problem-xcept at the beginning of a simulation; 
see Heywood,” Heywood and Rannacher”, and GS), the velocity from the projection 
method approximation, by construction, must ‘slip’ along r: 

T ’ V  = ‘T*( f i -vq)  # T ’ W  



594 P. M. GRESHO 

in general, so that another goal of projection methods is to minimize the slip velocity, 

s = t . ( v - w )  on r, ( 104 
so (in part) that 'wall vorticity production' will be as smooth and accurate as possible. Here t 
is the unit tangent vector in a 2D domain; in 3D this can be written as 

n x ( v x n ) # n x ( w x n )  and s = n x [ ( v - w ) x n ]  on r. (lob) 
Part of the vorticity production is in fact realized (albeit discontinuously, in the form of a 
vortex sheet) after the projection step, by setting uo = w( T) on r rather than uo = v( T) to 
begin the next cycle. We will have more to say on this later. 

7. If n e w  = 0, the projection is an orthogonal projection and satisfies a Pythagorean 
theorem: 

where 

(Proof: 

Then 

= Ilvl12+ IIVcpI12.) 
Note also the interesting and perhaps counter-intuitive result that 

when n - w = 0 on I-, where u and P are the NS solution; the acceleration is, 'on the average', 
orthogonal to the pressure gradient when the velocity is parallel to the boundaries (i.e. for 
x+T); see also Chorin and Mar~den . '~  
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The next step in the derivation is to compare 3( T) with the NS velocity u( T) at the same time. 
This we begin by applying simple Taylor series analyses as follows: 

t Z  
2 

u ( t )  = uo + t i ,  + -ii, + o(t3), 

. t2 L' 
i-i(t) = ii,+tii,+-u,+O(t~), 

2 

where Go = u,, and we invoke the PDEs to get-assuming suflcient smoothness- 

u, = ii, = vvzu ,  + f, - VP,, 

.. a 
u, = - [ v V 2 u + f - V P ] , = ,  = v v ~ u O + f O - v @ , ,  

at 

: a  I ar 
at au u, = - [vV2fi+T-VPo],=, = vV2uo+fo ,  where f ( u )  - - u ,  

to give, after verifying that to = fo, 

t 2  
ii(t)-uu(t) = - v ~ , + o ( t 3 ) ,  2 (12) 

a result that is generally true in R but may break down for x+T because of a BC incompatibility, 
which we examine next. 

Inserting (12) into (8) at t = T gives 

vZq=v2  (T - @ , + o ( T ~ )  

-- a' - n . [ 3 ( T ) - w ( T ) ]  
an 

a 
= Tz (81 Po + 8 2  TP,) 

on r; 

with the last result a consequence of assuming that the normal component of (12) holds on r, 
which we now examine more closely. These two Neumann BCs on cp amount to a compatibility 
condition on the boundary; i.e. they imply that 

d 
- [81TPo+(82-* )T2@o]  = 0 ( T 3 )  an 

should be satisfied, and this leads to the selection P 1  = 0, p 2  = as the coefficients that yield the 
'optimal' BCs on the intermediate velocity; i.e. the BC on ii is 

ii = w+3t2VPo. (64 
This selection in fact leads to the satisfaction of the first- and second-order compatibility 
conditions for (6); i.e. it yields continuous values of and J23 /J t2  for t+O and x+T. Higher- 
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order compatibility conditions, however, are not satisfied, even with this optimal selection, e.g. 

an observation that will be more relevant when we discuss simpler projection methods. Hence the 
intermediate velocity, even from this ‘optimal’ projection method, like that from all other 
projection methods, will always suffer some loss of regularity (relative to the true NS velocity) near 
r for t+O in general, a boundary layer (BL) will exist-details to follow later-in which some of 
the derivatives of ii experience large changes. 

With this selection of the Bi it then follows that the solution of (13) is 

T 2  
cp =-Po+0(~j)  2 in fi, (14a) 

and we see how the Lagrange multiplier of this optimal projection method is related to the 
pressure, an important result that we shall return to later when we present simpler and cost- 
eflectioe projection methods. (The method we are currently deriving makes no such claim.) 

Finally, we examine v = ii( T) - Vq from (9), and easily see, using (12) and (14a), that 

v = u ( T ) + O ( T 3 )  in R; ( 14b) 
i.e. v appears to be a good approximation to the NS velocity-at least ‘away from’ r. 
method summarizing what has thus far been derived and filling in the missing steps. 

We now present an algorithmic statement of a fully continuous and ‘optimal’ Projection 2 

Remark. Below and henceforth we denote, for simplicity, an entire algorithm by what might 
usually be considered an ‘equation number’. 

Optimal projection 2 

(0) Given uo with V * u o  = 0, Po and Po, 
(1) Solve for ii, with iio = uo at t = 0, from 

aii 
at 
- 

(2) Solve for cp from 

(3) Compute 

(4) Solve for P (  T )  from 

. -  -vv2ii =T-vP, in R, 

t2  - 
2 ii = w+-VP, in r, for 0 -= t I T.  

aq T~ aPo 
an 2 an 

on r. -=-- 

v = i i ( ~ ) - ~ c p  in ij. 

V2P=V*f(v) in R, 
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ap 
- = n-[vVZv+f-w(T)] on r. 
an 

(5 )  Solve for P ( T )  from 

vzP=v*i(v)  in R, 

aP 
- = n.[vvZi+i-wt(T)] on r, 
an 

where G = vV2v+f(v)-VP and f(v) = (af/av)*i. 

Remark 1 below), Po = P, Po = 
(6) Report v and P,  then set t = 0, uo = v (except in the tangential direction(s) on r; see 

and go to Step (1). 

Remarks 

1. uo is not set to v( T) on r to begin the next cycle, which displays slip, but rather to w( T)-a 
necessary procedure that introduces into ii a vortex sheet at r of strength s = O( T3), where 
s is the slip velocity discussed earlier; see (10). The loss of regularity associated with this 
process (i.e. with a jump in the tangential velocity at r) is discussed by Heywood and 
Rannacher”-albeit for the true NS equations. 

2. Start-up (the beginning of a simulation, not the beginning of a projection cycle) is not simple 
and seems to exact more smoothness from the data than do the NS equations; and, in 
general, the computation of P is unattractive. 

3. Three Poisson equations per cycle seems a lot unless the method would work well for fairly 
large T. In fact: 

4. A replacement of the PPE for P( T) by P( T) = Po + TPo and of the Poisson equation for 
P( T )  by P( T) = 2 q / T 2  would (though inexpensive) not be optimal in that both a P / d n  and 
a P / a n  on r would be wrong: after m projection cycles they would be a P ( m T ) / a n  = aPo/an 
+ mTaPo/an and a P ( m T ) / d n  = aPo/an respectively, where here Po and Po refer to the 
values at the beginning of the simulation. 

By following similar and hopefully obvious steps, other members of this family of projection 
methods can be derived. So, before pushing on towards more useful schemes, we first present a 
lower-order and a higher-order member of this family, again in the form of algorithms. 

Optimal projection 1 

(0) 
(1) 

Given uo with V uo = 0 and Po, 
Solve for ii, with iio = uo at t = 0, from 

in i2, 

ii = w +  tVPo on r, for 0 < t I T. 
(2) Solve for 4p from 

V z p  = V * i i ( ~ )  in R, 
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(3), (4) As in Projection 2. 
(5 )  As in step (6) of Projection 2 except omit Po = P 

Remarks 

1 .  At the beginning of a simulation, Po is obtained by solving (2). 
2. This is (close to) the continuous form of Chorin's original projection m e t h ~ d ~ . ~  and the 

simplest one possible, since it makes a guess of zero for Vf? 
3. i i ( T ) =  u(T)+TVPo+O(T2). 
4. v = u( T )  + O(  T 2 )  and cp = TP, + O(  T 2 )  = TP( T)  + O(  T2) .  
5. The slip velocity (vortex sheet strength) is O(  T2) ,  but n - v  = n e w  on r. 
6. Only the first-order compatibility condition is satisfied. At second order, 

a* ii,, 
lim - 

so that this scheme is less smooth than Projection 2. 
7. If the result cp = T P ( T ) + O ( T 2 )  is used to replace solving the PPE of step(4) by 

P( T) EZ cp/ T, which is then to be used as Po in the next c y c l e 4  la Chorin2 and Kim and 
Moin''-the scheme is no longer optimal in the following sense: the inhomogeneous BC 
used for the projection, acp/an = Tap,/&, will never change its value from one cycle to the 
next, with the result that the initial normal pressure gradient is enforced throughout the 
computation. The fact that these schemes 'worked' is attributed to the biharmonic miracle, 
which we shall define later. 

The next, a higher-order scheme (and the last that we consider), is: 

Optimal projection 3 

(0) 
( 1 )  

Given uo with V * u o  = 0, Po, Po and P',, 
Solve for ii, with ii, = uo at t = 0, from 

aii 
at 
_ _  vv2ii = T -  V(P, + tPo)  in R, 

t 3  
6 

ii = W + - - V P ' ~  on r, for 0 < t I T .  

(2) Solve for cp from 

V2cp = V*ii(T) in R, 

- on r. acp T~ aPo 
an 6 an 

(3)-(5) As in Projection 2. 
(6) Compute P from 

v 2 P  = v *if(v) in R, 

(7) Same as step (6) of Projection (2) except add P', = P'( T ) .  
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Remarks 

1. The optimal BC derivation required the addition of &t3VP0 to the RHS of (6b) and the 

2. i i (T)=  u ( T ) + ( T ~ / ~ ) V P ~ + O ( T ~ ) .  
3. v = u( T ) + O (  T4) and cp = ( T3/6)P0 + O( T4). 
4. The slip velocity (vortex sheet strength) is O(T4), but n - v = n * w  on r. 
5. The first three compatibility conditions are satisfied-and a smoother yet solution will be 

realized. The first compatibility condition violation is at fourth order: 

selection of = f12 = 0, p3 = &. 

lim - a4ii0 + l i m e 1  . 
x+r at4 t + O  at4 

6. The additional smoothness implications at start-up and the addition of yet one more 

7. We employed a scheme similar to this (but with different BCs on 6 )  some years ago,16 which 

8. Again start-up is difficult: Po and (especially) Po are not readily available and smoother 

A general remark concerning all of these optimal projection schemes is that they require the 
solution of more Poisson equations than most people would care to do; one (or less!) per 
projection cycle is much more appealing, and is in fact what most effective schemes in practice 
have been based upon. Add to this the ‘inconvenience’ of needing to compute dP/at for 
Projection 2 and a2 Plat2  for Projection 3,  and the so-called ‘optimal’ methods look less optimal. 
In fact, the only reason we called them optimal is that they can yield smoother solutions near r by 
virtue of the selection of (optimal) BCs on the intermediate velocity such that a high-order 
boundary compatibility condition is satisfied. 

Poisson equation per cycle are clearly undesirable features. 

we called subcycling. 

(than for NS) data are required. 

3.1.2. Simpler schemes. The above line of reasoning, combined with the two facts 

(i) many practitioners have already ‘done it’ 
(ii) the computation of VP on r is not easy to do in a finite element code 

and the suspicion that P should be obtainable from cp, leads one to ask the question: ‘Suppose we 
waive/violate/ignore these compatibility conditions to generate simpler algorithms?’ This we do 
below; in particular, each of the (simpler, and advocated) schemes presented next uses the 
prescribed physical velocity as the BC on the intermediate velocity, which necessarily (via pi = 0 
in (6b) and (8b)) leads to homogeneous Neumann BCs for the single Poisson equation per cycle, for 
cp, and-initially at least-to a host of new ‘problems’. (We remark that, in contrast to Kim and 
Moin” we do not believe in, nor have we experienced, problems related to ‘consistency’ with 
these BCs-only ‘regularity’.) The simplified projection techniques presented now are justified 
later. 

Projection I (18) 
(0) Given uo with V - u ,  = 0, 
(1) Solve for ii, with iio = uo at t = 0, from 

- -v~2 i i= ’ i  aii in R, 
at 

i i =  w on r, for O < t  I T. 
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(2) Solve for cp from 

P. M. GRESHO 

(3) Compute v = i ( ~ ) - ~ c p  in fi. 
(4) Report v; then set t = 0, uo = v (except on r, as discussed earlier) and go to step (1). 

Remarks 

1. No pressure calculation (no PPE) is even required; but if a pressure estimate is desired, it can 
be obtained from P ( T )  = p / T  by assuming that the same relationship obtained for the 
optimal scheme still applies-an assumption we will validate later. 

2. The BC implied for the implied PPE for this scheme is dP/an = 0 on r, which is clearly a bud 
BC vis-a-vis (2b); the scheme thus appears to be both hare-brained and doomed. (For 
example, consider a steady boundary-driven Stokes flow with no body force, for which (2) 
becomes V 2 P  = 0 in Q, aP/an = n.vV2u  on r. The actual use of @ / a n  = 0 here is clearly 
wrong since it implies P = 0.) But this is only an appearance, as we will demonstrate. 

3. The slip velocity (vortex sheet strength) is larger, namely s = - TaPo/ar + O( T’), but 
n v = n * w (still) on r. And in fact, all of the ‘wall vorticity’ is introduced into the fluid 
in this (discontinuous) manner. 

4. Not even the first-order compatibility condition is satisfied; in fact, 

5. As previously mentioned, some (e.g. Chorin’ and Kim and Moin15) have endeavored to use 
the optimal BC on 6, giving acp/an = TaPo/an in the above algorithm. But a little inductive 
reasoning reveals that this BC merely holds aP/an on r at its initial (beginning of 
simulation) value, so this BC too seems to be bad-at least in the normal direction. But it 
does do a better job in the tangential direction, giving s = O( T2) .  These facts have in fact 
been put to good use by Fortin et al.” and Zang and Hussaini,I8 who employed a mix of 
simple and optimal BCs for ii in their Projection 1 schemes; namely n * i  = n e w  and 
7 ii = T w + TaPo/az,  the former of course leading to the bad BC on pressure, aP/dn = 0 
on r, but the latter leading to a smaller slip velocity. 

Projection 2 

(0) 
(1) 

Given uo with V * u o  = 0 and Po, 
Solve for i, with io = uo at t = 0, from 

vv2i i  = T - v P ,  in R ,  
aii 
at 
_-  

ii = w on r, for 0 < t l  T. 

(2), (3) Same as Projection 1 in (18); i.e. perform the projection. 
(4) Compute P(  T )  = Po+2cp/T in R.  
( 5 )  Report v and P ;  then set t = 0, uo = v (but only in R, as previously discussed), 

Po = P(  T )  and go to step (1). 
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Remarks 

1. At the beginning of a simulation, Po is obtained by solving (2). 
2. The P( T )  computation is now based on the assumption (see (14a)) that cp N ( T 2 / 2 ) P 0 ,  

another assumption that we will soon validate-and the simple approximation 

3. The BC implied for the implied PPE is aP( t ) /an  = aP,,/an, which implies, by induction, that 
aP/an on r is held at its initial value-another seemingly worthless approximation. But this 
Projection2 scheme actually generates very good results, and this paradox too will be 
explained in due course. 

4. The slip velocity (vortex sheet strength) is s=  -( T 2 / 2 ) a P 0 / a t + O (  T 3 ) ,  whose cancellation 
adds a small amount of additional vorticity to the fluid, the major portion now coming from 
VPo during the intermediate velocity phase-i.e. the dominant and smoothly inserted 
vorticity ‘comes from’ aPo/a t  Ir and the no-slip BC (ii = w on r). Also, n - v = n - w (still) on r. 

Po = [ P ( T ) - P , J / T .  

5. Only the first-order compatibility condition is satisfied. At second order, 

Projection 3 

(0) 
( 1 )  

Given uo with V - u ,  = 0, Po, and Po, 
Solve for ii, with Go = uo at t = 0, from 

aii 
at 
-- vv2ii = ?-V(P0  + tP , )  in R, 

i i= w on r, for O < t s  T. 

(2), (3) Same as Projection 1 in (18); i.e. perform the projection. 
(4) 
(5 )  
(6) 

Compute P (  T) = Po + TPo + 3 q / T  in a. 
Compute P ( T )  = C P ( T ) - P , ] / T =  P , + 3 c p / ~ ~  in sl. 
Report v and P; then set t = 0, uo = v (in R), Po = P(  T) ,  Po = P( T) and go to step (1). 

Remarks 

1. At the beginning of a simulation, Po is obtained by solving (2) and Po is obtained by taking 
one very small step (At,) using forward Euler or Projection 1 and using e0 = (PI - Po) /At , .  

2. The pressure calculation is now based on the assumption (again, validated later) that 
cp N ( T 3 / 6 ) P 0 ,  along with (the fact that) P (  T )  = Po + TPo + ( T 2 / 2 ) P 0  + O( T3) .  

3. The BC implied for the implied PPE is dP(T) /an = aPo/an+ TaPo/an, which (finally) is 
reasonable. 

4. The slip velocity is s = - ( T 3 / 6 ) a P 0 / a t  + O( T4). Also, n * v  = n - w (still) on r. 
5. The third-order compatibility condition has been lost; in fact, 

6. The ‘crude’ estimation of P in step (5)-in lieu of solving another Poisson equation-is 

7. This scheme has not yet been tested in practice, but probably should be. 
judged to be cost-effective. 
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Before returning to the ostensibly worthless pressure BCs of Projections 1 and 2, we open 
Pandora’s box even further by returning briefly to the thus-far ignored question: ‘How is cp really 
related to P in the absence of the satisfaction of the maximum number of BC compatibility 
conditions?’ Recall that we merely assumed that cp N TP, cp 2: ( T 2 / 2 ) P  and cp N ( T3/6)P‘  to 
dejne the three simpler schemes. Consider Projection 2, the others (again) following by analogy. 
Whereas we determined that 

T 2  
2 

cp = - + 0 + ~ ( ~ 3 )  

from the problem, 

when we used b2 = in the optimal Neumann BC, now we have f12 = 0 and thus a(p/an = 0 on r, 
and we are led to seek a solution of the following form: 

TZ 
cp = T + 0 + ~ ( ~ 3 ) + ~ ,  

where F is a harmonic function; i.e. F must satisfy 

on r. aF T~ a+, V 2 F = 0  in R, -=--- 
an 2 an 

Unfortunately, however, this new and generally unknown function is seen to be of size O( T2), 
which is ‘too large’-i.e. it pollutes the presumed cp-P relationship and seems tofurther undermine 
the simpler projection methods. 

The resolution of the above dilemma, and the paradoxes that preceded it, is contained in the 
results of an analysis of these projection methods-presented below-that ultimately leads to 
what we will call the biharmonic miracle. Rather than satisfying the PPE (2) of the true NS 
equations, the pressure from a projection method actually satisfies a higher-order equation-a 
sort of biharmonic equation-that contains the following ‘miracle’: it permits the pressure both to 
satisfy the ‘bad BCs’ mentioned above and to recover to the proper NS solution (through a 
boundary layer, or penetration depth) a short distance away from r. (It will be a true biharmonic 
equation when time is discretized.) The associated boundary layer thickness over which the 
miracle occurs is 6 = ,/( v T )  and is of course ‘sufficiently small’ only when 6 4 I ,  where I is any 
relevant physical length scale. 

So one restriction on the projection cycle time T is T 4 1 2 / v .  
After two brief diversions, one on vorticity and the other regarding more general BCs, we will 

return to and prove these allegations. 

3.1.3. Vorticity production. The issue of ‘vorticity production at no-slip walls’ is an important 
one, and it is therefore relevant to address it when using any approximate solution method. In this 
subsection we show how the post-projection cancellation of the slip velocity (thus far tentatively 
labelled ‘spurious’) is related to vorticity ‘production/injection’ at the boundary. In 2D (for 
simplicity) let w = au,/dn - au,/& be the vorticity on r; then Q = - vdw/an is the vorticity flux 
into R at r. Using V - u  = 0 = au,/an + au,/at ,  it follows that Q = - vV2u,, so that the total (NS) 
vorticity flowing into R at a point on r during time T is, from (la), letting g = T * [f - u - V u ]  and 



SEMI-IMPLICIT PROJECTION METHODS. PART 1 603 

focusing on the tangential pressure gradient, 1: Qdt = 1 : ( g - a ~ / ~ 7 ) d t - [ w , ( T ) - w , ( O ) ,  

apO t 2  aPo 
= J T  gdt- [w,( T)- w,(O)] - j:(% + tat +Tas+ 0 ( T 3 )  

0 

= 1: gdt - [w,( T) - w,(O)] - 

and it becomes clear that the vortex sheet introduced upon the reduction of the slip velocity to zero 
a f e r  each projection cycle has the efect of adding-discontinuously, as a vortex sheet-another 
portion of the vorticity into R to that which was (smoothly) injected during the intermediate velocity 
phase ofthe projection cycle via the ii = w boundary condition. For Projection 1 this is in fact all of 
the vorticity (none is injected during the first phase), via s = - TaPO/ar + O( T2), whereas for 
higher-order projection methods it is a smaller correction term, since the major portion of 
vorticity input is accomplished via the better estimates of VP-and more smoothly at that. It is 
significant to note that the ‘optimal’ projection methods do no more than permit one-order (in T) 
higher vorticity input during the intermediate velocity phase by injecting more of the vorticity in a 
smoother way, resulting in a smaller-yet vortex sheet correction upon projection-plus-slip- 
velocity cancellation. 

For the general case (curved boundaries in 3D) the same result holds. To see this, note first that 
the normal flux of tangential vorticity, Q E - vn x d o / a n ,  where o = V x u, becomes-using the 
identity awlan = V ( o  - n) + (V x w )  x n and the fact that w - n = 0 on a stationary no-slip wall- 
Q = - vn x [(V x w )  x n]. But the viscous term in the NS equation is vV2u = -vV x o and it 
therefore follows that the tangential component of the momentum equations does indeed relate 
the tangential pressure gradient to the normal flux of tangential vorticity. 

It therefore follows that the re-imposition of the no-slip BC for 6 at the beginning of each 
projection cycle is actually a crucial part of the projection method approximation and contributes 
vitally to its success. It may also be too harsh to label the projection slip velocity as spurious; it 
should be regarded as simply another aspect of the approximation-and that the comparison of 
v( T )  with u( T) is simply ‘awkward’ as x + r, where u + w smoothly but v suffers a jump (in the 
tangential directionband it is a larger jump using the simple BCs. 

3.1.4. OutJow boundary conditions (OBCs). In order to generalize our results, we now drop the 
constraint T2 = $73 and show how the Neumann BCs (Id) are (or at least could be) accounted for 
in these projection methods; i.e. we return to the original problem given in (1). (We label the 
section OBCs because outflow situations account by far for the largest use of such BCs.) The 
incorporation of the Neumann BCs into the projection methods is based on (i.e. was derived 
from) an analysis of the weak form of the equations (as was (Id) derived, in point of fact) and is 
another example of the utility of weak forms; i.e. they can often show the way to useful and 
legitimate (natural) BCs. Only a summary of the results is given here; for a more detailed 
exposition, including the discrete case via the FEM, see Gresho et al.” 

Before presenting the results-again in the form of algorithms-we remark that the most 
common/useful implementation of these Neumann BCs as OBCs is also the simplest: 
F , ( t )  = F , ( t )  = 0. F ,  = 0 (or C, a constant) is appropriate for simple isothermal flows (no 
buoyancy effects) without body forces and only one outflow region (no splitting/branching of 
the domain), and tends to set the pressure level via P N - C and, concomitantly, yields 
au,/dn N 0; i.e. it turns out that the viscous portion of the ‘normal traction force’ is usually 
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small compared to the pressure part. F ,  = 0 is useful in that it yields au,/an = 0, and it is gener- 
ally true that a( - ) / a n  = 0 is a passive and useful OBC, at least when the outflow velocity is in (or 
close to) the same direction as the outward-pointing normal vector-even if only ‘on average’ as 
in, for example, vortex shedding. 

The general projection methods that we advocate for problems with OBCs are as follows. 

Projection 1 with OBC 

(0) Given uo with V uo = 0, 
(1) Solve for i, with io = uo at t = 0, from 

a i  --vv2i=? in R, 
at 

i = w  on rl, 
aii ali 

v n  = F , ( t )  and v2 = F , ( t )  on Tz, for 0 < t s T.  an an 

(2) Solve for cp from 
Vzcp = V * i ( T )  in R, 

- 0  on rl, acp _ -  
an 

cp = - TF,(T)  on r2. 
(3) Compute v = I ( T ) - v ~  in li. 
(4) Report v; then set t = 0, uo = v in R and on r2(uo = w( T) on r,) and go to step (1). 

Remarks 

1. If pressure is desired or required, it is given by P( T) = q / T ,  a relationship that was already 

2. Same as Remarks 2-5 in the previous Projection 1 algorithm-see (18kapplied now on rl. 
3. Because we have done it, we can assert that the use of the BC cp = 0 on Tz is actually also 

legitimate, even though it always implies P = 0 there-but it is legitimate only because it is 
saved by the biharmonic miracle, to be described later. 

used to set cp on r2 so that P = - F,  there. 

Projection 2 with OBC 

(0) Given uo with V - u ,  = 0 and Po, 
(1) Solve for I, with iio = uo at t = 0, from 

i = w  on r1, 
aii, 

vZ=F,(t)+Po and 

in R, 

aii, 
an 

v-= F , ( t )  on Tz, for 0 < t l  T.  
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(2) Solve for cp from 

Vzcp=V*3 in R, 

T 
cp = - T I F n ( T ) + P o ]  on Tz. 

(3) Compute v = G(T)-v~ in a. 
(4) Compute P( T )  = p0 + 2cp/ T in a. 
(5 )  Report v and P; then set t = 0, Po = P( T), uo as in Projection 1 with OBC, and go to 

step (1). 

Remarks 

1. As in Remarks 1-5 of the previous Projection 2 algorithm-see (19). 
2. As with Projection 1, the P-cp relationship of step (4) was used to set the cp BC on Tz, and 

3. Same as Remark 3 for Projection 1 with OBC, except here cp = 0 implies P ( T )  = Po. 
they both derive from the desire to have P = - F ,  on Tz. 

Projection 3 with OBC 

(0) Given uo with V-u, = 0, Po and Po, 
(1) Solve for 3, with 3, = uo at t = 0, from 

vv23 = T- V(P0 + tPo)  
a3 
at 
_-  

3 = w  on rl, 
ai, v- = F ( t ) + P  o + t P o  and 
an  

(2) Solve for cp from 

V2cp = V*ii(T) in R, 

m 
1 

cp = - - [ F , ( T ) + P , + T P ~ ~  on rz. 
3 

in Q, 

(3) Compute v = i(~)-vcp in a. 
(4) Compute P( T) = Po + TFo + 3cp/ T in a. 
( 5 )  Compute P ( T )  = [P(T)-P,] /T  in a. 
(6) Report v and P; then set t = 0, uo as in Projection 1 with OBC, Po = P( T),  Po = P( T), and 

go to step (1). 
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Remarks. As in Remarks 1-7 of the previous Projection 3 algorithm with r replaced by rl- 

Having now presented the complete algorithms proposed for ‘solving’ (I), we are (finally) ready 

see (20bplus the second remark following the Projection 2 algorithm above. 

to move on towards the ‘explanations’ alluded to/promised several times. 

3.2. Analysis of projection methods 

While the projection methods defined above require only periodic projections from ii to v at the 
discrete times t = nT, n = 1,2, . . . , it is of course possible to continuously project i i ( t )  to v(t)  and 
thus to regard both v and cp as continuous functions of time. And this we now do (in principle) in 
order to analyse and better understand these schemes. Thus, focusing on Projection 2 (of the 
simpler algorithms) again, consider: 

(0) Given uo with V - u ,  = 0 and Po, 
(1) Solve for ii, with Go = uo at t = 0, from 

a i  
at 

vv2ii  = T- VP, -- in R, 

U = W  on rl, 
aii, aii 

V- = F ( t ) + P  and v 2  = F , ( t )  on Tz. 
an * an 

(2) Perform the continuous projection; i.e. 
(a) solve 

acp - = 0  on rl, an  

t 
cp = - $F.( t )+  Pol on r2; 

(b) compute 

v(t) = i ( t ) - ~ c p ( t )  in a. 
(3) Compute 

~ ( t )  = ~ , + 2 c p / t  in a. 
(4) At t = T, set uo = v(T) in Rand on r2, uo = w(T) on rl, P o = P ( T )  in a, t = 0, and go to 

The above theoretical/conceptual algorithm is presented solely for the purpose of the analysis 
that follows, but it is perhaps interesting to observe that it could also be used in practice. 

A key feature of the analysis relates to the following question: ‘Viewed as a continuous 
projection for 0 < t I T, are there additional PDEs (besides those defined by the projection) that 
are satisfied by v and cp, and if so, what are they and what relationshipifany-do they bear to 
the NS equations?’ 

The first step towards the answer is to insert ii = v + V q  into the PDE for the intermediate 
velocity to obtain 

step (1). 

in R, 
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v + V q = w  on rl, (25b) 

(254 
a a 
an an v-[n*(v+Vq)]  = F , ( t ) + P ,  and v - [ ~ - ( v + V q ) ]  = F,(t) on Tz, 

which, when augmented by the initial condition v + V q  = uo at t = 0, is a well-posed problem for 
the linear combination of the two vector fields v and Vq, each component of which (e.g. ox+ acp/ax) 
evolves independently if 1 is independent of ii; e.g. Stokes flow. Rearrangement yields 

-++Po+ --vvz vq = v v z v + 1 ,  
av 
at (:t ) 

which we will refer to as a modifiedlperturbed momentum equation and note three things: 
(i) v could look like u to the extent that Po + ( a / &  - vVz)q looks like P; (ii) it could be solved for 
v(x, t) if q were known, using the (slippery but non-penetrating) BCs of (25b); which leads to 
(iii) another requirement then that v ‘look like’ u is, from (25b), that a q / a z  is ‘small’ on rl, and 
another, from (25c), is that both dzq/an2 and a2cp/anar are ‘small’ on T,-all of which are most 
easily attained (in theory at least) by keeping T ‘sufficiently small’. 

Next we subtract the NS momentum equation (la) from (26) to obtain 

which we analyse as follows. 

Recall from (14b) that v - u  = O(t3)  outside the BL-where now this means x > O[,/(vt)], 
where x denotes the normal distance from r into R. 
Using (again outside the BL) ii = u + ( t 2 / 2 ) V e o + O ( t 3 )  in 1-f = f (b) - f (u)  leads to 

- t z  ar . 
f - f = - - * VP, + O( t3). 

2 au 

Finally, we have P - Po = tPo + O(tz) .  

Thus (27) can be approximated by 

at least outside the BL, which leads to the (important) result 

except perhaps within the BL. 

when provided with the BCs 
This parabolic PDE for q supplements the conventional (and elliptic) one V 2 q  = V . 6 ,  and 

_ -  ” -0 on rl 
an 

and 

(294 
t 
2 cp = --[F,(t)+P,] on Tz, 
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and the initial condition 

c p = O  a t t = O ,  (294 
would provide a well-posed problem for ~ ( x ,  t )  if indeed (29a) were valid in all of Q 

Remark. Except for the BC on rl, the ‘optimal’ scheme would imply a similar cp-problem; in 
fact, (29b) would then be replaced by dcp/an = (t2/2)dP0/an, which is a higher-order term. Thus, 
to lowest order and ‘away from r’, cp is the same for the simpler scheme as for the optimal scheme. 

So, to first order in t and outside the BL, q is also governed by-or at least satisfies-the 
transient heat equation (29), whose solution in this case is closely approximated by the ‘outer 
solution’, 

t Z  
cp(x, t )  = +,(XI + o(t3), (30) 

a la (14a), provided x > O(6) ,  where 6 = ,/(vt), which ensures that we are outside the BL. The 
solution for cp within the BL is not simple; it is also not (very) relevant as long as t is small 
enough-which we must and do assume. 

This analysis suggests at least that non-optimal BCs for these projection methods can only be 
deleterious within a boundary layer of thickness ,/(vt); outside this BL, cp returns to the same 
value-given by (30) and (14a)-that it would have using optimal BCs, which BCs are also not 
spared from some irregularity near r. 

Remarks 

1. The BL ‘pollution’ restricts only the normal component of Vcp (from (30)) from applying 
inside the BL; the tangential component of Vcp (again from (30)) applies all the way through 
the BL. Thus T - v  = r.(ii-Vcp) = t .w-(t2/2)dPO/dr+O(t3) on rl, justifving our earlier 
assertions regarding the slip velocity (e.g. Remark 4 of (19)). 

2. If, however, the optimal BC had been used, (30) would apply without restriction throughout 
the BL-pollution then would only occur at higher order (in t) and the slip velocity would 
be smaller, O ( t 3 ) ,  as shown earlier. 

3. A similar analysis, with similar results, applies to the first- and third-order schemes; i.e. 
outside the BL, (a/at-vV2)cp = P , + O ( t )  and cp(t) = t P o + O ( t 2 )  for Projection 1, and 
(a/at-vV2)cp = ( t 2 / 2 ) f i , + O ( t 3 )  and cp(t) = (t3/6)fi ,+O(t4) for Projection3. The cp-P 
relationships assumed in the recommended algorithms have been justified-at least ‘away 
from’ r. 

4. The alleged ‘bad’ BCs implied for the pressure via Projections 1 and 2 are now vindicated by 
being interpreted in the following sense: while they are indeed bad and indeed used and 
enforced, they cause pollution only within the BL, outside of which the proper ‘BCs’ 
prevail-the quotation marks being meant to imply that we are aware of the slack use of the 
term boundary condition. 

With this new information in hand we return to (26), which now reads 

av 
-+V(P,+tP,) = vV*v+f+O(P), 
at 

and we see that v does indeed satisfy a PDE that is very close to the NS equation. 
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Finally, the pressure computation in the algorithm, P ( t )  = Po + 2rp/t, is seen to be justified by 
virtue of its consistency with (30) by using Po = [ P ( t ) - P o ] / t  + O ( t ) .  But the pressure actually 
also satisfies a higher-order PDE-because rp does-that will, in the semi-discrete case to follow, 
lead to a biharmonic equation; namely the divergence of (26), with V - v  = 0, gives 

( &vv’)v’rp = V . ( 7 - V P 0 )  in R. 

This equation is endowed with the IC given by (29d) and the following BCs: (29b), (29c) and 

( ; - vV’ )$  = n-( at on rl and Tz, (33) 

which, as is the case for the Neumann BC for the PPE (see GS), is a manifestation of V * v = 0 on 
that Is obtained by applying the normal component of (26) on r. Outside the BL, (32) becomes 
V 2 ( P o + t P o )  = V . f + O ( t 2 )  and (33) becomes ( a / a n ) ( P , + t e o )  = n - ( v V 2 v + f - & / a t ) + O ( t 2 ) ,  
which approximates (2), as desired/required. 

When we return to the semi-discrete version of these higher-order equations we will see that rp 
satisfies a biharmonic equation that approximates (32), which will finally lead to the biharmonic 
miracle-the continuum version of which we have just endeavoured to uncover. 

Thus, since this analysis and results generalize easily to the other projection schemes in this 
family, we have shown that regardless of the BCs applied to ii in the normal direction, the projection 
methods described herein satisfy the relationships presented between cp and P and will therefore 
deliver legitimate approximations to the NS equations. While the normal pressure gradient (but 
not the tangential) will generally be perturbed by 0(1) on r, and higher-order normal derivatives 
may be very bad (e.g. a 2 P / d n z  is O( 1/6) on rl), the solution beyond S (the ‘outer solution’) will be 
very good. The tangential BCs on ii are not miraculously saved, however, and they need not be; 
here the use of physical BCs simply causes more of the wall vorticity generation to occur as vortex 
sheets. There appears, however, to be less freedom in the selection of 7 .  ii than there is in that of 
n - ii. If optimal BCs were used for ii, the maximal compatibility condition would be satisfied and 
the boundary layer adjustment would be smaller-and so would the slip velocity. 

It may be useful to repeat and emphasize at  this point that none of the ‘Projection 2’ methods 
used to make computer codes (including our own) with which we are have used 
optimal BCs for 6. They all use 6 = w and thus rely on the phenomena just presented to make 
their codes ‘work’. Finally, although Chorin’ and Kim and Moin15 did attempt to use the optimal 
BCs for the simpler (one Poisson equation per cycle) Projection 1 method, we have shown already 
that the miracle is also required there since dP/an actually remains at its initial value during the 
entire flow evolution. 

Remarks 

We conjecture that these new results will help the mathematicians in their thus-far elusive 
proofs of convergence in the presence of boundaries. We hope that they will also be able to 
‘clean up’ the somewhat heuristic analyses put forth here. 
In Temam,23 the ‘bad’ BC of Projection 1, aP/an = 0, was also addressed, and it was 
shown, via ‘higher-level’ techniques using the tools of functional analysis applied to the 
semi-discrete equations, that ‘this does not affect the convergence of the scheme’. We hope 
and believe that our approach complements his. 
The effects of error accumulation should be, but have not yet been, accounted for; i.e. a 
global error analysis of these projection methods is desirable. (The analyses thus far 
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presented were only local in the sense that we assumed that the true NS velocity and 
pressure were available at the start of each projection cycle, when in fact they are not.) If the 
results of such (seemingly very difficult) efforts were to parallel those of the semi-discrete NS 
equations viewed as a differential-algebraic equation (DAE) system, they would predict 
error accumulation in velocity but not in pressure; this would then lower all (v-u)  error 
estimates by one order in T. 

3.3. Semi-discrete projection methods 

While the 'proper' computer implementation of projection methods would separate projection 
error (the only error discussed thus far) from ODE integration error (the intermediate velocity 
must be time-integrated on the computer via an ODE method), no-one yet has been that smart. 
We too will simply (and stupidly (?), especially for flows that are approaching steady state and 
using Projection 2 or higher) assume, as (tacitly, usually) have all others, that the projection error 
is large enough that T should be no larger than At, the ('reasonable') time step of the selected 
ODE scheme, thus confounding the projection and ODE errors and leaving room for the 
development of still better methods, but generating simple algorithms that seem to work pretty 
well. 

As is common practice, we will use semi-implicit techniques in which the viscous term is treated 
implicitly and the advection term explicitly. An important attribute of such semi-implicit methods 
is that they allow the solution of several smaller, symmetric, and sequential linear systems (one for 
ii, one for C, one for cp) rather than a single, larger coupled system (e.g. for u, v and P). In fact, 
whether or not this was the principal objective of the early investigators of projection methods, it 
is  surely the only reason that we had for ever venturing into this deep intellectual morass-we would 
much prefer to use 'honest GFEM', i.e. implicit methods on the fully coupled equations via the 
finite element method, and would always do so if our computer budget would allow it. We also 
prefer the trapezoid rule as the implicit technique, and use a modified forward Euler scheme for 
the explicit portion. The semi-discretized Projection 2 method that we have 'used' (i.e. for 
Ax + 0) is the following. 

Semi-discrete projection 2 with OBCs (34) 
(0) Given uo with V * u o  = 0, solve for the initial pressure field from (2); i.e. 

VzPo = V - f ( u o )  in 0, 

= n ~ [ v V Z u o + f ( u o ) - w o ]  on rl, ap, 
an 

auO" 
an 

Po = v--FF,(0) on Tz. 
Set m = 0. 

(1) Solve for ii,+ from 
- 
U m + 1 - U m  + VP, = +vVz(ii,+, + u,) + f(u,) in 0, At 

with 
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i.e. solve 

( I - - V 2  v;t )- ~ , + 1  = ( I + - - V z  v;t ) u,+At ( f , -VP, )  

for u , + ~  subject to the given BCs. 
(2) Solve for cp from 

V2cp =V. i i ,+ ,  in R, 

At 
CP = - ~ C F n ( t r n + l ) + P m l  on r2. 

(3) Update the velocity from 
- 

= iim+l - V q  in Q. 

(4) Update the pressure from 

P,+ = P ,  + 2cp/At in fi. 
Bump rn and go to step (1). 

Remarks 

1. Again, aP/dnl , ,  will remain unchanged from its initial value. 
2. The analogous steps for the first- and third-order schemes should be obvious. 
3. We have thus far only implemented and tested the first two of these projection schemes 

(Projections 1 and 2), although some years ago we designed a version of the Projection 3 
scheme that used explicit time integration exclusively and did not use T = Ar. In Gresho er 
a l l6  we used an estimate of the local time truncation error to determine T, and forward 
Euler stability results to select At;  the ratio T/Ar  was called the subcycle ratio, and ranged 
from 2 to 20 or more. (We also solved a pressure Poisson equation at each projection cycle 
rather than use the approximation P = Po + TPo + 3 q / T ,  which we did not then know.) 

4. We actually overspecify the projected velocity in our codes; i.e. rather than computing 
z - u,+ = z * (6 - Vcp) on r during the projection step, which would put the slip velocity in 
plain view, we hold z u, + = 7 - w, + 1. This procedure is expedient and innocuous in the 
following sense: it is not hard to show that the error so incurred is at the level of the spatial 
truncation error multiplied by At;  i.e. it vanishes with either temporal or spatial refinement. 
(It is nor innocuous in the sense of spurious pressure modes when certain finite element 
methods are employed, a point we shall return to later.) This cost-effective short-cut is also 
justified a posteriori by the numerical results so obtained. In fact, as far as we can determine, 
only Zang and Hussaini" actually compute (and report?) the slip velocity. (Recall that it is 
the post-projection reduction to zero of the slip velocity that really matters.) 

5. For reasons that we do not yet fully understand, the omission of the factor of 2 in step (4) 
seems to have little effect, i.e. P,+ = P,,, + q / A t  also works well in practice (finite Ax). We 
shall return to this point later-after presenting the fully discrete case in Part 2. 
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3.4. A potentially more-cost-efective semi-discrete projection method 

In the light of previous discussion, it may be possible and useful to at least attempt to separate 
projection error from ODE error-specially, for example, when the At from the ODE is stability- 
limited and the flow approaches a steady state. We provide next some initial ideas in this 
direction, which we have not tested, but which with further development and testing might be 
cost-effective-a task we may leave to others. We utilize Projection 2 again. (Indeed, these ideas 
could probably not be fruitfully applied to Projection 1.) 

For openers, suppose that At from the ODE scheme is so small that it may be assumed that the 
local truncation error is small enough to be ‘negligible’-just the opposite of the assumption 
inherent in ‘applied’ projection methods. Also suppose that we monitor the size of V ii in some 
appropriate norm while integrating (at At)  the intermediate velocity and project only when 
11 V ii 11 reaches a maximum allowable value, 11 V ii 11 = E. (Wouldn’t a ‘colour movie’ showing 
V - i  in R be marvelous? And better yet, it could lead to better grid designs.) Recalling that 
ii = u + ( t 2 / 2 ) V P o  + O ( t 3 ) ,  we have )IV-ii)l = O ( t 2 ) ,  and this leads easily to the following 
dynamic adjustment of the projection time T: 

Tk+ 1 = T k J [ & /  11 ’ ii(Tk) 11 1, (35) 
where To (the value of Tat  the beginning of a simulation) is probably best determined as follows, 
recalling that the initial pressure field is already required as a part of the start-up procedure: 

To = JCW II v2Po II 1, (36) 
where Po is estimated as (P ,  - Po) /At ,  and where At, is a (very) small time step used in a forward 
Euler scheme to go from Po to P,; i.e. (r, = 0 for simplicity): 

(i) Compute 

us = uo + At,(vV2uo + f,, - VP,) in R, 

us = w, on r. 
(ii) Solve for P, from 

V 2 P ,  = V - f ,  E V - f ( A t , )  in R, 

aP,/an = n~[vV2u,+f , - (w,-wo)/At,]  on r. 
(iii) Compute v 2 P 0  from 

V2Po  = ( V 2 P , - V 2 P o ) / A t ,  = ( V * f , - V . f o ) / A t , .  

Remarks 

1. A useful value of E would need to be determined, most likely by trial and error and hopefully 
not on a case-by-case basis. In general, of course, E could be ‘user-specified’. 

2. If Tk+ b At, the assumptions made in estimating T,+ are probably valid and the subcycling 
procedure described above would probably be effective; i.e. the next projection would then 
not be performed until & + , / A t  steps had been taken in the ii-integraton. 

3. If, on the other hand, &+ , 6 At, and if the theory is still sound-probably a big ‘if-then At 
is too large (whether it be CFL-based or diffusion-based) and should probably be reduced 
to O( T,, It may be the case that this situation would occur at initial start-u-specially 
if the transient implied by the BCs and ICs is ‘sharp’. 

4. The above ‘first-cut’ strategy ignored, among other things, the effect of local (and global) 
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ODE error in relating 3 to T; thus, for example, if At% Tk+ 1, the assumption upon which 
Tk + was based [ V - u - O( t ')I is in error-perhaps fatally. 

5. All things considered, probably the strategy should only be invoked when &+ > O(At): it is 
then more justifiable and more cost-effective. 

6. A similar device might be useful for Projection 3. 

3.5. The biharmonic miracle (BHM) 

An analysis of the semi-discrete Projection 2 method, analogous to that done earlier for the 
fully continuous case, is obviously of interest, since it is then but one 'small' step (spatial 
discretization) from there to an algorithm that can actually be programmed for the computer. It is 
also of interest because it reveals the BHM. 

1. Insert a,, = urn+ + Vcp into the intermediate velocity equation of (34) to obtain the 
analogue of (25), 

urn+ At(f,-VP,), 

which can be rearranged to 

um+1-um [ it( v;t ) 3 + v  P,+- I--VZ vcp = ~ v v 2 ( u m + 1 + u , ) + f , ,  At (37) 

a semi-discrete modifiedlperturbed momentum equation-the analogue of (26). 
2. Apply the divergence operator and use V *urn+ = 0 to get 

(I-62VZ)V2cp/At = V*(f,-VP,), (38) 
a biharmonic equation (finally!) for cp, where here the BL thickness is 6 5 ,/(vAt/2); 
cf. (32). 

3. Use cp = At(P,+ - PJ2 to obtain 

urn+ 1 - urn + v ( Prn+ ;+ " ) = +VVZ(U,, 1 + u,) + f, + a2vv2 
At 

from (37) and 

from (38), which we 'interpret' as a momentum equation and a PPE respectively, each 
perturbed by a higher-order (O(At2)) term. Further rearrangement leads to the biharmonic 
equation (BHE) that is actually satisfied by the pressure, 

( I  - 62VZ)VZP,, 1 = 2V.f ,  - ( I  + 62VZ)VZP,, (39a) 
which we also regard as a perturbed PPE. 

4. The BCs associated with this BHE are 
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1 - ( I  + 62VZ)VPm 2Um+ 1 -Urn 

At 
on rl and T2, (39d) 

[ a 
an 

and -(I-62Vz)Pm+, = n .  vV2(u,+,+u,)+2f,- 

the last of which is the normal component of the modified momentum equation. 

Remarks 

1. As in the continuous case, the Neumann BC on rl is spurious. 
2. Similar to the continuous case, the pressure field will ‘adjust itself‘ from a spurious inner 

solution at and near the wall to a good outer solution outside the BL-an assertion we shall 
actually try to prove below. 

3. cp from (38) ‘looks like’ cp from (32) after one time step starting from cp = 0. 
4. After showing that the above BHE system is well-posed, we will introduce a 1D model that 

mimics this system and that we are able to solve-both analytically and numerically. 

When r2 = @-the only contentious case-a necessary condition that the BHE system have a 
solution is obtained by integrating (39a) over the domain to give, using the divergence theorem, 

Invoking the third BC, (39d), then leads to the requirement that 

n~[~V~(u,+~+u,)-2(w,+~-w,)/Atl = 0. 
Jr 

But the viscous terms vanish via 

Irn*V2u = lnV.(v2u)  = j n v * I v ( v * u ) - v  x v x u l ,  

because V * u  = 0 and div curl (.) = 0. The second term ( w )  vanishes by virtue of constraint (lh), 
and thus the biharmonic problem is well-posed. 

We now turn to a 1D model problem that we believe sheds much light on the previous 
confusion. Consider the following two ODE problems. 

( 1 )  The ‘PPE’ (40) 
- u ”  = S = constant on 0 < x < 1, 

u ’ =  a at x = 0, 

u ’ = a - S  at x =  1, 

where we note that the solvability condition 1; S = u‘(0) - u’( 1) is satisfied so that a solution 
exists-at least up to an arbitrary additive constant. This u, call it uppE, represents the good/ 
desired solution. 

( 2 )  The perturbed PPE or biharmonic equation ( B H E )  (41) 

on O < x < l ,  

u ’ = q ,  at x = O ,  
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u I =  q1 at x = 1, 

- ~ 2 u ” ’ + u ’  = a at x = 0, 

- 6 2 u ” ’ + u r  = a - S  at x = 1. 

Remarks 

1. We regard the BHE as ‘spurious’ and u from (41) as being in error to the extent that it differs 

2. The solvability condition 82u’”lA - u’I A = S is satisfied and a solution exists-again up to an 

3. Moreover, the solution exists independently of the values of qo and q l .  
4. It is noteworthy that the Neumann data of the unperturbed problem have appeared, in a 

perturbed form, in the higher-order BC, and that the true first-derivative BCs of the BHE 
are unrelated to those of the PPE. 

5. Hopefully, it is clear that the dependent variable called u in the 1D problem corresponds to 
the pressure in the multidimensional problem. 

The PPE solution is uppE = ax-Sx2/2, and that of the BHE is 

from uPpE. 

arbitrary additive constant. 

6 
t~ = uPPE + - - l,d { [ S - a( 1 - e - l id)  + ( q1 - qOe- 19] ex/d 

+ [S+a(e1/6- l ) + ( q l  -qoe1/d)]e-x/6}, 

which is easier to deal with in the (relevant) approximation that follows when we require 6 4 1: 

u N uppE + G [ ( S - a  + q,)e-(l-x)’d + ( a -  qo)e-x/6], (42) 
a simple but (we claim) far-reaching result. 

Remarks 

1. The size of the perturbation (error) in u is O(6) on r (i.e. at x = 0 or l), that in u’ (i.e. the 
normal pressure gradient) is O(1), that in u” (the Laplacian of P) is 0(1/6), etc.; i.e. 
progressively higher derivatives are progressively larger on r. 

2. But there are thin BLs near both boundaries, and away from these, u = uppE + O(6e-’/d); i.e. 
u is very close to uppE away from the ‘walls’. Also away from the walls, u’ = ubPE + O(e- l/d), 

U ” = U ; , ,  + O(e- ‘/‘/6), etc.; the perturbations are noticeable only on and near r and drop to 
very small values in passing through the BL. 

3. Whereas u’  = qo at x = 0 and u’ = q1 at x = 1, as required by (41), it is also true that u’ = a 
at x = O(S) and u’ N a - S at x = O( 1 - 6); i.e. the Neumann BC of the P P E  is nearly 
recovered upon passage through the BL-another result that is independent of the values of 
qo and q l .  The perturbed (third-derivative) BC associated with the perturbed PPE recovers 
the desired behaviour even though the actual Neumann BC satisfied by the BHE solution is 
no good. 

4. (I -6’d2/dx2)u = (I -S2d2/dx2)uppE = up,,+ O(S2), a result that will have direct applica- 
tion to the Projection 1 method. 

5. If qo = a and q1 = a - S, the BHE actually has the same solution as the PPE, and the BHM 
is not required nor invoked. This is the analogue of the ‘BC compatibility’ discussed 
earlier-but it is not a perfect one since we can never obtain the same solutions in the 
multidimensional PDE case. 
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6. Finally, since d2u”” = O(e-”’/6) away from the walls, the BHE itself is effectively trans- 

This describes the BHM in 1D. To the extent that it carries over to the actual case of interest, 
the heretofore unexplained success of projection methods with non-optimal BCs is now ex- 
plained. 

In fact, the extension of the ID analogy leads to another-though perhaps even less rigorous- 
BHM. Return to the modified momentum equation (37) and replace rp by At(P,,,+ - P,,,)/2 to 
obtain the eflective pressure gradient VPeff = VCP, + ( I  - d2V2) (P,+ - P,,,)/2]. The extension 
of the 1D BHM-via (42) with q,, = q1 = &to the 2D (or 3D) pressure equation is then as 
follows. 

(i) The approximate solution of the BHE-in the form presented in (38bnear  rl is 

formed to the PPE away from r. 

where [(P,,,+ - Pm)/2]ppE refers to the correct (NS) pressures and x is the normal distance 
from rl into R. (Note that we (still) have 

a p m + 1 - P r n  1 = o ,  - 
an  2 rl 

the ‘bad’ Neumann BC.) 
(ii) Insert this solution into Peff = P,,, + ( I  - S2V2)(P,+ - P,,,)/2 to get 

where P’ = aP/& on rl.  
(iii) Next, since [(P,, - Pm)/2]PPE is (by assumption) smooth, it varies little in passing 

through the BL, which gives-assuming that P, % P,,,IppE; i.e. we admit to applying simple 
local analysis when global analysis is actually called for- 

i.e. the eflective pressure is a good approximation even in the BL, so that even aP,,,/an 
is accurate-another consequence/aspect of the BHM. (We note in passing that 
Peff = (I -d2V2)P,,,+ for Projection 1, and the analogy with the 1D model problem (see 
Remark 4 after (42)) is especially clear since ( I  - S2Vz)P,+ = PppE + O(S2), a result also 
established in Orszag et aL4) 

(iv) Finally, it follows-by inserting Per, into (37ktha t  the ‘perturbed’ momentum equation 
mimics well the true momentum equation in all of R; only the tangential BC is different. 

Before leaving the (continuous) 1D model, however, we should point out that we too worried 
about the important question: ‘But suppose (after full discretization) that your mesh is too coarse 
to resolve the BL-i.e. suppose Ax2 9 vAt, which could be a common occurrence in practice?’ To 
answer this question, we used a finite difference method to generate approximate solutions of (40) 
and (41) (for S = 6, a = 4, qo = q1 = 0) on grids containing 50,100,200 and 400 intervals and (for 
each grid, with Ax = h)d/h-values of 0~01,0~10,1~0,10 and 100 to cover the range from a poorly 
resolved BL (i.e. 6 / h  = 0.01 has - zero BL resolution by the mesh) to a very-well-resolved one 
( 6 / h  = 100 has - 100 grid points in the BL), with the following results: 
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(i) In all cases the solution of the discrete BHE was close to that of the discrete PPE once out 
of the BL region. 

(ii) For 6 4 h the solution of the discrete BHE ignores/does not recognize the existence of the 
BL that it cannot ‘see’; i.e. the first node in from the boundary agrees well with the discrete 
solution of the PPE at the same node. 

The good and important news from (ii) may even be termed the discrete BHM: regardless of the 
ratio of projection BL thickness 6 to mesh spacing h, the projection method solution will mimic 
well the (discrete) NS solution for all node points farther than O ( 6 )  from the boundary. It only 
remains a requirement to keep 6 small. 

To conclude the discussion of semi-discrete semi-implicit projection methods, it may be useful 
to restate them in such a way as to identify them with those previous researchers whose work we 
have studied. To this end we present the projection methods in the following ‘combined’ form 
(r, = fa here, partly for simplicity and partly because the treatment of Neumann BCs 
was not discussed in sufficient detail in the references). 

1. Intermediate velocity: 

am+ 1 -urn + V ( a l P m + a z A t k , , , ) = ~ + v V Z I O i i , + ,  +(1-8)um] in R, 
At 

2. Poisson equation: 

V z q = V - i i  in a, 

3. Final velocity: 
- 

=iim+l-Vcp in R. 
4. Update pressure terms and go to step 1. (Except as mentioned below, the pressure updates 

Remarks 

1. Advection is treated in various ways and is not included in our comparison. 
2. 8 = 0, $ and 1 correspond to forward Euler, trapezoid rule and backward Euler respectively 

on the viscous tern-and of course 8 = 0 is not a semi-implicit method. 
3. The results are shown in Table I. 
4. Orszag and c o - ~ o r k e r s ~ * ~ ~ ~ ~ ~  have used a related/similar projection method except that the 

‘fractional steps’ are performed in a different order-typically (i) advection, (ii) projection, 
(iii) viscous. Also, ‘intermediate’ velocities are solved using the appropriate physical BCs 
and no pressure term (u  la our simple Projection 1 method). See also Marcus,26 in which a 
similar splitting method was found to be too inaccurate in some cases and was thus 
abandoned. 

5 .  In some explicit projection methods (all of which are simply the forward Euler method)- 
e.g. Amsden and Harlow,” the ‘two-step scheme’ of Fortin et ~ l . ~ ’ * ~ ~ - t h e  paradox of 
aP/an = 0 on r also arises (either explicitly by the author or, if not mentioned by the author, 
implicitly by the ‘student’). We wish to point out this paradox is not at all related to a 

are as described earlier.) 
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Table I. Summary of semi-implicit projection methods 

Method Parameters 

Optimal 

Investigator 

Chorin2* 
Fortin et al.” 
TemamZ3 
Temam2 3. 
Gresho et a1.I6 
Kim and Moin” 
Van KanZ0 
Zang and Hussaini” 
Kim and Moin2’.‘ 
Bell et al.zzsf 
This work 

P 1  
P 2  
P3 

P1 
P1 
P1 
P 1  
P3* 
P 1  
P 2  
P1 
P 2  
P 2  
P18 
P 2  

0 
1 
1 

0 
0 
0 
0 
1 
0 
1 
0 
1 
1 
0 
1 

0 
0 
1 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

1 0 
0 1 
0 0 

1 0 

0 0 

0 0 
1 0 
0 0 

0 0 
0 0 
0 0 
0 0 

O / l b  0 

O/ lb  0 

O / l b  0 

0 1” 
0 1” 
0 1 
0 1 
0 0  
0 4  
0 4  
0 4  
O f  
0 4  
0 f o r 1  
0 f o r 1  

a These authors used 0 = 1 (implicit Euler) in an AD1 and/or fractional step context. 
/II = 0 in the normal direction, /I1 = 1 in the tangential. 
This family of schemes involves an arbitrary number of ‘advection4ffusion’ steps between t ,  and t,+ and 

could perhaps be referred to as Projection 1 with subcycling. 
This ‘forward Euler + projection’ scheme used subcycling in which ‘many’ smaller steps were used to advance i. 

It is not a semi-implicit scheme and is included only because it is the closest approach to a ‘Projection 3’ scheme 
that we have seen. It differs too in that the pressure update was obtained by solving the PPE. 
’ This is their current method, except that their pressure update is unclear. 

Their pressure update is somewhat different: P,+ 
To our knowledge, our simple treatment of Projection 1 (6  = w on r), implemented in the second part of this 

= P,- + q / A t .  

paper via an FEM, is the first that has been successfully demonstrated. 

computational BL and the BHM; it has a completely different explanation, which is detailed 
in Gresho et al.” (See also Ea~ ton ,~ ’  in which some ‘MAC issues’ were clarified, even 
though his terminology of ‘homogeneous boundary conditions’ is unconventional and 
confusing; ‘a misnomer’-Ea~ton.~~) 

In the second part of this paper we shall demonstrate some of the techniques derived herein via 
a finite element method, although we hasten to point out that the theory derived in this paper is 
independent of the technique chosen for its implementation via spatial discretization. 
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APPENDIX SUMMARY OF PROPERTIES OF PROJECTION OPERATORS 

General (continuum and discrete) 

Projection to div-free subspace: 
p2 = p, div p = 0 

Continuum Discrete 

p = II-V(V2)-’V* p = I - M ~ ~ c A - ~ c ~  
curl p = curl 

Q = I - p ,  Q2 = Q; div Q = div 

Q@ = 0 w E 
p projects onto the null space of Q, 
i.e. onto the space of div-free vectors 

Q = V(Vz)-’V- 
v * w  = 0 + QW = 0; 

pQ = 0: w = Qu-+ p w  = 0; 
Q projects onto the null space 
of p, i.e. onto the space of vectors 
that are gradients of scalars 

w = Vq where 

(also, curl w = 0) 
v2q = v-u 

If u 3 pu and w = Qu, then 
u + w = u. Also, u I w, i.e. 
l lU1l2+ IIW1l2 = ll”lI2, but 
only if n * w  = 0 on r (continuum) 

The eigenvalues of p are either 
0 or 1 (ditto Q); (1 p II = 1 (ditto Q), 
so that the projections are norm- 
reducing: w = pu -, II w II < II u I1 (ditto Q )  

(a, b )  = Jn ab, 

and 11 u 11 = ( u ,  u) 

Q = M L ’ C A - ~ C ~  

C T W  = 0 

w = M i 1  C q  where 
A q  = C’u 
- 

(a ,  b )  = aT M , b  

and 11 u II = (u ,  u )  

(A symmetric projection p2 
can also be constructed: 

which gives orthogonality 
in L,: (a ,  b )  = a T b )  

p2 I - M i  ‘12CA- ‘CTM- 112 
L t  
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